Phospholipases C and A2 control lysosome-mediated IL-1 beta secretion: Implications for inflammatory processes.
نویسندگان
چکیده
Blocking the activity of IL-1 beta has entered the clinical arena of treating autoimmune diseases. However, a successful outcome of this approach requires a clear definition of the mechanisms controlling IL-1 beta release. These are still unclear as IL-1 beta, lacking a secretory signal peptide, follows a nonclassical pathway of secretion. Here, we analyze the molecular mechanism(s) undergoing IL-1 beta processing and release in human monocytes and provide a unifying model for the regulated secretion of the cytokine. Our data show that in a first step, pro-caspase-1 and endotoxin-induced pro-IL-1 beta are targeted in part to specialized secretory lysosomes, where they colocalize with other lysosomal proteins. Externalization of mature IL-1 beta and caspase-1 together with lysosomal proteins is then facilitated by extracellular ATP. ATP triggers the efflux of K(+) from the cell, followed by Ca(2+) influx and activation of three phospholipases: phosphatidylcholine-specific phospholipase C and calcium-independent and -dependent phospholipase A(2). Whereas calcium-independent phospholipase A(2) is involved in processing, phosphatidylcholine-specific phospholipase C and calcium-dependent phospholipase A(2) are required for secretion. Dissection of the events that follow ATP triggering allowed to demonstrate that K(+) efflux is responsible for phosphatidylcholine-specific phospholipase C induction, which in turn allows the rise in intracellular free calcium concentration required for activation of phospholipase A(2). This activation is ultimately responsible for lysosome exocytosis and IL-1 beta secretion.
منابع مشابه
Cyclic AMP mimics, but does not mediate, interleukin-1- and tumour-necrosis-factor-stimulated phospholipase A2 secretion from rat renal mesangial cells.
We have previously shown that recombinant interleukin 1 (IL-1) and recombinant tumour necrosis factor (TNF) synergistically stimulate phospholipase A2 release from mesangial cells. We now report that treatment of mesangial cells with the beta-agonist salbutamol, prostaglandin E2 (PGE2), cholera toxin or forskolin, which all activate adenylate cyclase, increased release of phospholipase A2 activ...
متن کاملEffects of dexamethasone and transforming growth factor-beta 2 on group II phospholipase A2 mRNA and activity levels in interleukin 1 beta- and forskolin-stimulated mesangial cells.
The expression of 14 kDa group II phospholipase A2 [also referred to as secretory PLA2 (sPLA2)] is induced in rat glomerular mesangial cells by exposure to inflammatory cytokines and forskolin, a cAMP elevating agent. Previously we have shown that dexamethasone and transforming growth factor-beta 2 (TGF-beta 2) suppress sPLA2 protein synthesis and enzyme activity induced by cytokines and forsko...
متن کاملSecretory phospholipases A2 activate selective functions in human eosinophils.
Secretory phospholipases A(2) (sPLA(2)s) are released in large amounts in the blood of patients with systemic inflammatory diseases and accumulate at sites of chronic inflammation, such as the airways of patients with bronchial asthma. Blood eosinophils or eosinophils recruited in inflammatory areas therefore can be exposed in vivo to high concentrations of sPLA(2). We have examined the effects...
متن کاملHydrolysis of surfactant-associated phosphatidylcholine by mammalian secretory phospholipases A2 R. DUNCAN HITE,1 MICHAEL C. SEEDS,1 RANDY B. JACINTO,1 R. BALASUBRAMANIAN,1 MOSELEY WAITE,2 AND DAVID BASS1
Hite, R. Duncan, Michael C. Seeds, Randy B. Jacinto, R. Balasubramanian, Moseley Waite, and David Bass. Hydrolysis of surfactant-associated phosphatidylcholine by mammalian secretory phospholipases A2. Am. J. Physiol. 275 (Lung Cell. Mol. Physiol. 19): L740–L747, 1998.—Hydrolysis of surfactant-associated phospholipids by secretory phospholipases A2 is an important potential mechanism for surfac...
متن کاملChemokines (CCL3, CCL4, and CCL5) Inhibit ATP-Induced Release of IL-1β by Monocytic Cells
Chemokines and ATP are among the mediators of inflammatory sites that can enter the circulation via damaged blood vessels. The main function of chemokines is leukocyte mobilization, and ATP typically triggers inflammasome assembly. IL-1β, a potent inflammasome-dependent cytokine of innate immunity, is essential for pathogen defense. However, excessive IL-1β may cause life-threatening systemic i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 26 شماره
صفحات -
تاریخ انتشار 2004